Hyperbolic Functions Problems

Assume two poles of equal height are spaced a certain distance apart from each other. If a heavy cable or wire is connected between two points at the same height on the poles, the resulting curve of the wire is in the form of a "catenary", with basic equation

 $y = a \operatorname{Cosh}(\frac{x}{a})$ (Graph this curve for different values of "a" : positive, negative, large, small)

Associated problems:

Given that $\sinh x = \frac{e^{x} - e^{-x}}{2}$ $\cosh x = \frac{e^{x} + e^{-x}}{2}$

- 1. Write the hyperbolic tangent function; Write the remaining three hyperbolic trig functions.
- 2. Establish the identities for:
 - i) Sinh (2x) ii) Cosh (2x) (as in trigonometry, there should be 3 such identities)
 - iii) Sinh (x + y) iv) Cosh (x + y) v) Sinh (-x) vi) Cosh (-x)
- 3. Establish the expressions for $\cosh x + \sinh x = ??$ $\cosh x \sinh x = ??$
- 4. Establish the "Pythagorean Identities" for the hyperbolic functions:

Does $\sinh^2 x + \cosh^2 x = 1$? If not, what change(s) should be made to get a result of 1?

Show that $1 - \operatorname{Tanh}^2 x = \operatorname{Sech}^2 x$ $1 - \operatorname{Coth}^2 x = -\operatorname{Csch}^2 x$

How do these Hyperbolic Pythagorean Identities compare to the analogous trig identities?

- 5. Find $D_X Sinh x$ Find $D_X Cosh x$ Find $D_X Tanh x$ Find $D_X Coth x$ Find $D_X Sech x$ Find $D_X Csch x$
- 6a. Show that $\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$. Find expressions for $\cosh^{-1} x$ and $\tanh^{-1} x$ What is the domain of each of these inverse hyperbolic functions?
- 6b. Derive a formula for the deriverative of the inverse hyperbolic sine function $y = \sinh^{-1} x$ (hint: how is the deriverative of inverse sine derived: $D_x (\sin^{-1} x) = ??$); Also, derive the deriverative of $y = \cosh^{-1} x$ (i.e., $D_x (\cosh^{-1} x) = ??$)

Find the derivative:

7.	y = Tanh x	8.	$f(x) = e^x \operatorname{Cosh} x$
9.	$y = \sinh e^{2x}$	10.	$g(x) = \cosh^{-1} x^2$
11.	$y = Cosh x^3$	12.	y = Coth (ln x)
13.	$f(x) = \sin^{-1}(\operatorname{Tanh} x^2)$	14.	f (x) Tanh ^{-1} (Cos e ^x)
Find the antiderivative:			
15.	$\int \sinh^4 x \cosh x dx$	16.	$\int x \operatorname{Sech}^2 x^2 dx$

- 17. $\int \frac{\sinh\sqrt{x}}{\sqrt{x}} dx$ 18. $\int e^t \cosh e^t \sinh e^t dt$
- 19. $\int \frac{\sinh x}{1 + \cosh x} dx$ 20. $\int \frac{\cosh t}{\sqrt{\sinh t}} dt$
- 21. At what point on the curve y = Cosh x does the tangent have slope 1 ?
- 22. The *gudermannian*, named after the German mathematician Christoph Gudermann (1798 1852) is the function $gd x = Tan^{-1} (Sinh x)$ Show that $D_x (gd x) = Sech x$