Hyperbolic Functions Problems

Assume two poles of equal height are spaced a certain distance apart from each other. If a heavy cable or wire is connected between two points at the same height on the poles, the resulting curve of the wire is in the form of a "catenary", with basic equation
$y=a \operatorname{Cosh}\left(\frac{x}{a}\right) \quad$ (Graph this curve for different values of "a" : positive, negative, large, small)

Associated problems:
Given that $\quad \operatorname{Sinh} x=\frac{e^{x}-e^{-x}}{2} \quad \operatorname{Cosh} x=\frac{e^{x}+e^{-x}}{2}$

1. Write the hyperbolic tangent function; Write the remaining three hyperbolic trig functions.
2. Establish the identities for:
i) $\operatorname{Sinh}(2 x)$
ii) Cosh (2 x) (as in trigonometry, there should be 3 such identities)
iii) $\operatorname{Sinh}(x+y)$
iv) $\operatorname{Cosh}(x+y)$
v) $\operatorname{Sinh}(-x)$
vi) $\operatorname{Cosh}(-x)$
3. Establish the expressions for $\operatorname{Cosh} x+\operatorname{Sinh} x=? ? \quad \operatorname{Cosh} x-\operatorname{Sinh} x=? ?$
4. Establish the "Pythagorean Identities" for the hyperbolic functions:

Does $\operatorname{Sinh}^{2} x+\operatorname{Cosh}^{2} x=1$? If not, what change(s) should be made to get a result of 1 ?
Show that $\quad 1-\operatorname{Tanh}^{2} \mathrm{x}=$ Sech $^{2} \mathrm{x} \quad 1-\operatorname{Coth}^{2} \mathrm{x}=-\operatorname{Csch}^{2} \mathrm{x}$
How do these Hyperbolic Pythagorean Identities compare to the analogous trig identities?
5. Find $D_{x} \operatorname{Sinh} x$ Find $D_{x} \operatorname{Cosh} x \quad$ Find $D_{x} \operatorname{Tanh} x$

Find D_{x} Coth $x \quad$ Find $D_{x} \operatorname{Sech} x \quad D_{x} \operatorname{Csch} x$
6a. Show that $\operatorname{Sinh}^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$. Find expressions for $\operatorname{Cosh}^{-1} x$ and $\operatorname{Tanh}^{-1} x$ What is the domain of each of these inverse hyperbolic functions?

6b. Derive a formula for the deriverative of the inverse hyperbolic sine function $y=\operatorname{Sinh}^{-1} x$ (hint: how is the deriverative of inverse sine derived: $\mathrm{D}_{\mathrm{X}}\left(\operatorname{Sin}^{-1} \mathrm{x}\right)=$??); Also, derive the deriverative of $y=\operatorname{Cosh}^{-1} x \quad$ (i.e., $D_{x}\left(\operatorname{Cosh}^{-1} x\right)=$??)

Find the derivative:
7. $\mathrm{y}=\operatorname{Tanh} \mathrm{x}$
8. $f(x)=e^{x} \operatorname{Cosh} x$
9. $y=\operatorname{Sinh} e^{2 x}$
10. $g(x)=\operatorname{Cosh}^{-1} x^{2}$
11. $\mathrm{y}=\operatorname{Cosh} \mathrm{x}^{3}$
12. $\mathrm{y}=\operatorname{Coth}(\ln \mathrm{x})$
13. $f(x)=\operatorname{Sin}^{-1}\left(\operatorname{Tanh} x^{2}\right)$
14. $f(x) \operatorname{Tanh}^{-1}\left(\operatorname{Cos}^{x}\right)$

Find the antiderivative:
15. $\int \operatorname{Sinh}^{4} x \operatorname{Cosh} x d x$
16. $\int x \operatorname{Sech}^{2} x^{2} d x$
17. $\int \frac{\operatorname{Sinh} \sqrt{x}}{\sqrt{x}} d x$
18. $\int e^{t} \operatorname{Cosh} e^{t} \operatorname{Sinh} e^{t} d t$
19. $\int \frac{\operatorname{Sinh} x}{1+\operatorname{Cosh} x} d x$
20. $\int \frac{\operatorname{Cosh} t}{\sqrt{\operatorname{Sinh} t}} d t$
21. At what point on the curve $y=\operatorname{Cosh} x$ does the tangent have slope 1 ?
22. The gudermannian, named after the German mathematician Christoph Gudermann (17981852) is the function $\operatorname{gd} x=\operatorname{Tan}^{-1}(\operatorname{Sinh} x)$ Show that $D_{x}(\operatorname{gd} x)=\operatorname{Sech} x$

