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QUANTIZATION OF ANGULAR MOMENTUM 
 
Recall that classically the angular momentum is given by L = r x p. 
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multiply both sides by: ℏ2𝑓(𝜃)𝑔(𝜑) 
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We now define the angular momentum operator L2 by: 
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Thus, the above equation can be written as: 
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From which it follows that, 



 2 

 
2 2( 1)L = +  

 

(1) ( 1)  ,  0,1,2..., 1L n= + = −  Quantization of Angular Momentum 

 
 
Likewise, it can also be shown that the z – component of angular momentum is 
also quantized and given by: 
 
 

(2)  , 0, 1, 2,....,zL m m= =     

 
 
Thus, for all potential energies where U=U(r) the angular momentum will be 
quantized and given by the above equations. 
 
 
SPACE QUANTIZATION 
 
The physical significance of equations (1) and (2) above is that the angular 
momentum vector L can only point in those directions in space such that the 
projection of L onto the z-axis is one of the values given by equation (2). Thus, 
we say that L is space-quantized. 
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Ex. Consider the case for which = 2. 
 

   m   L   Lz 

 2  -2  6   -2  

 2  -1  6   -  

 2  0  6   0 

 2  1  6    

 2  -2  6   2  

 
 
 

 
 
Note that the angular momentum vector L never points in the z-direction since 
Lz must be smaller than the magnitude of L.  This is a consequence of the 
uncertainty principle for angular momentum that implies that no two 
components of L can be known precisely.  
 
From a 3-D perspective L processes around the z-axis so as to trace out a 
cone at angle θ in space. 
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 Space Quantization of L 

 
 


