MAXWELL'S EQUATIONS

In 1865 James Clerk Maxwell discovered that the fundamental principles of <u>electromagnetism</u> can be concisely expressed in terms of 4 equations. We call these four equations Maxwell's Equations:

Gauss's Law	$\Phi_E = \oint \mathbf{E} \bullet \mathbf{dA} = \frac{q_{enc}}{\varepsilon_o}$	Explains how electric fields E are produced by electric charges. E -field lines begin and terminate on charges.
Gauss's Law in Magnetism	$\int \mathbf{B} \bullet d\mathbf{A} = 0$	Physically there are NO magnetic monopoles. B- field lines form closed loops. They do not begin or end!
Faraday's Law	$\oint \mathbf{E} \bullet d\mathbf{I} = -\frac{d\Phi_B}{dt}$	Explains how electric fields E are produced by a changing magnetic flux.
Ampere's Law	$\oint \mathbf{B} \bullet d\ell = \mu_o (I + I_d)$ $I_d = \varepsilon_o \frac{d\phi_E}{dt}$	Explains how magnetic fields B are produced by both conduction currents and changing electric flux.