CENTER OF MASS

The motion of a system may appear to be quite difficult to describe because different particles making up the system will have different position, velocity, and acceleration. However, as we will see, it is not difficult to describe the motion of a system if we consider the motion of a special point called the center of mass. Two questions immediately arise: (1) What do we mean by the center of mass? and (2) How do we find the center of mass for a system?. The answer to the first question is given below. We will prove it later by applying N2L to the system

The center of mass of a body or a system of particles is:
a) the point that moves as though all the mass was concentrated at that point and
b) the resultant external force was applied at that point.

That is, the system or body moves as if the resultant external force was applied to a single particle of mass M located at the center of mass. We can also think of center of mass as the average position of the system's mass or a weighted-mass average of the system's mass.

Ex. Object in Free-Fall

The object moves in Free-Fall as if all the mass was concentrated on a single particle of mass M located at the center of mass and the net external force Mg was acting at the center of mass.

Ex. Thrown Baseball Bat/Baton

Once the bat is thrown, the center of mass moves in a simple parabolic path - just like a single particle of mass M located at the center of mass and the net external force Mg acting at that point.

Ex. Launched projectile the breaks up

Center of Mass for a System of Particles

Consider a system of 3 particles as shown below:

The x and y-coordinates of the center of mass are given by:

$$
\begin{aligned}
& x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}} \\
& y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}
\end{aligned}
$$

For an n-particle system:
$x_{c m}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{M}, y_{c m}=\frac{\sum_{i=1}^{n} m_{i} y_{i}}{M}, \quad z_{c m}=\frac{\sum_{i=1}^{n} m_{i} z_{i}}{M}$
The center of mass can also be located by its position vector:

$$
\begin{aligned}
& \vec{r}_{c m}=x_{c m} \hat{i}+y_{c m} \hat{j}+z_{c m} \hat{k} \\
& \vec{r}_{c m}=\frac{\sum m_{i} x_{i} \hat{i}+\sum m_{i} y_{i} \hat{j}+\sum m_{i} z_{i} \hat{k}}{M} \\
& \vec{r}_{c m}=\frac{\sum m_{i} x_{i} \hat{i}+y_{i} \hat{j}+z_{i} \hat{k}}{M}
\end{aligned}
$$

$\vec{r}_{c m}=\frac{\sum m_{i} \vec{r}_{i}}{M}$ (Center of Mass for a System of Particles)
Where $\vec{r}_{i}=x_{i} \hat{i}+y_{i} \hat{j}+z_{i} \hat{k}$ is the position of the $\mathrm{i}^{\text {th }}$ particle.

Center of Mass for an Extended Body

To find the CM for an extended body we divide the body into a large number of mass elements Δm_{i} and take the limit of $\vec{r}_{c m}$ as $\Delta m_{i} \rightarrow 0$:

$$
\begin{aligned}
& \vec{r}_{c m}=\frac{1}{M} \lim _{\Delta m_{i} \rightarrow 0} \sum_{i=1}^{\infty} \Delta m_{i} \vec{r}_{i} \\
& \vec{r}_{c m}=\frac{1}{M} \int \vec{r} d m
\end{aligned}
$$

In component form:
$x_{c m}=\frac{1}{M} \int x d m \quad y_{c m}=\frac{1}{M} \int y d m \quad z_{c m}=\frac{1}{M} \int z d m$

For a homogeneous, symmetric body the center of mass is at its geometric center.
Ex.

Uniform Rod

$\mathrm{L} / 2$
$\mathrm{~L} / 2$

Uniform Sphere

