Comparing Velocity and Acceleration

VELOCITY	ACCELERATION
$v_{\text {ave }}=\frac{\text { displacement }}{\text { elapsed time }}=\frac{\Delta x}{\Delta t}$	$a_{\text {ave }}=\frac{\text { change in velocity }}{\text { elapsed time }}=\frac{\Delta v}{\Delta t}$
$v=\frac{d x(t)}{d t}$	$a=\frac{d v(t)}{d t}$
Rate of change of position with respect to time.	Rate of change of velocity with respect to time.
Slope of tangent line to a x vs.t curve.	Slope of tangent line to a v vs.t curve.
When v = constant, $\underline{\mathbf{x} \text { vs. } \mathbf{t} \text { curve is a straight line. }}$	When a = constant, $\underline{\mathbf{v} \text { vs. } \mathbf{t} \text { curve is a straight line. }}$
In avvs. t graph, the area between the curve and the time axis equals the displacement of a particle between the corresponding time interval. $x-x_{o}=\int_{t_{o}}^{t_{f}} v d t \text { Displacement }$	In a a vs. t graph, the area between the curve and the time axis equals the change in velocity of a particle between the corresponding time interval. $v-v_{o}=\int_{t_{o}}^{t_{f}} a d t \text { Change in Velocity }$

