## PHYSICS 4B EQUATION SHEET

| $\mathbf{F}_{12}=\frac{k q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}_{12}$ | Coulomb's Law | $\mu=\frac{1}{2} \varepsilon_{o} E^{2}$ | Energy Density in an E-field |
| :---: | :---: | :---: | :---: |
| $\mathbf{E}=\frac{\mathbf{F}}{q}$ | Electric Field | $C=k C_{o}$ | Capacitance with Dielectric |
| $\mathbf{E}=k \frac{q}{r^{2}} \hat{\mathbf{r}}$ | Electric Field due to a point charge | $E=\frac{E_{0}}{k}$ | E-field with Dielectric |
| $\mathbf{E}=k \int \frac{d q}{r^{2}} \hat{\mathbf{r}}$ | Electric Field due to a continuous charge | $U=\frac{1}{2} C V^{2}$ | Energy in a Capacitor |
| $E=\frac{2 k \lambda}{r}$ | E-field due to infinite line of charge | $I=\frac{d Q}{d t}$ | Electric Current |
| $E=\frac{\sigma}{2 \varepsilon_{o}}$ | E-field due to an infinite plane of charge | $J=\frac{I}{A}$ | Current Density |
|  | E-field just outside a | $\mathbf{J}=\sigma \mathbf{E}$ | Ohm's Law |
| $E=\frac{\sigma}{\varepsilon_{o}}$ | conductor | $R=\frac{\rho \ell}{A}$ | Resistance |
| $\Phi_{E}=\int \mathbf{E} \bullet d \mathbf{d}$ | Electric Flux | $V=I R$ | "Ohm's Law" |
| $\Phi_{E}=\oint \mathbf{E} \bullet \mathbf{d} \mathbf{A}=\frac{q_{\text {enc }}}{\varepsilon_{o}}$ | Gauss's Law | $\rho=\frac{1}{\sigma}$ | Resistivity |
| $p=q d$ | Electric Dipole Moment | $R_{e q}=R_{1}+R_{2}$ | Resistors in Series |
| $\tau=\mathbf{p} \times \mathbf{E}$ | Torque on Electric Dipole | $\underline{1}=\frac{1}{R_{e q}}+\frac{1}{R_{2}}$ | Resistors in Parallel |
| $U=-\mathbf{p} \bullet \mathbf{E}$ | PE of electric dipole | $\begin{array}{lll}R_{e q} & R_{1} & R_{2}\end{array}$ |  |
| $\Delta V=\frac{\Delta U}{q}=V_{B}-V_{A}=-\int_{A}^{B} \mathbf{E} \bullet d \mathbf{s}$ | Electric Potential Difference | $I(t)=\frac{V}{R} e^{-\frac{t}{\tau}}$ | Current Charging Capacitor |
| $U=q V$ | Electric Potential Energy | $q(t)=C V\left(1-e^{-\frac{t}{\tau}}\right)$ | Charge Charging Capacitor |
| $U=\underline{k q_{1} q_{2}}$ | Electric Potential Energy | $\tau=R C$ | Time-Constant |
| r |  | $\mathbf{F}=q \mathbf{v} \times \mathbf{B}$ | Magnetic Force on a |
| $V=\frac{k q}{r}$ | Electric Potential due to a point charge |  | Moving Charge <br> Magnetic Force on a |
| $V=k \int \frac{d q}{r}$ | Electric Potential due to an extended body of charge | $\mathbf{F}=\Pi \times \mathbf{B}$ | Current-Carrying <br> Conductor |
| $\vec{E}=-\vec{\nabla} V$ | Relation between V and E | $\mathbf{F}=I \int^{b} d \mathbf{s} \times \mathbf{B}$ | Magnetic Force on a Current-Carrying |
| $C=\frac{Q}{V}$ | Capacitance |  | Conductor |
| $V$ |  | $\boldsymbol{\tau}=\mu \times \mathbf{B}$ | Torque on Current |
| $C=\underline{\varepsilon_{0} A}$ | Capacitance for Parallel- |  | Loop |
|  | Plate Capacitor | $U=-\mu \bullet \mathbf{B}$ | Magnetic Potential |
| $C_{e q}=C_{1}+C_{2}$ | Capacitors in Parallel |  | Energy |
| $\begin{array}{ccc}1 & 1 & 1\end{array}$ | Capacitors in Series | $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$ | Lorentz Force |
| $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$ |  | $\Delta V_{H}=\frac{I B}{n q t}$ | Hall Voltage |

$$
\begin{aligned}
& d \mathbf{B}=\frac{\mu_{o}}{4 \pi} \frac{I d \mathbf{s} \times \hat{\mathbf{r}}}{r^{2}} \\
& \mathbf{B}=\frac{\mu_{o}}{4 \pi} \frac{q \mathbf{v} \times \hat{\mathbf{r}}}{r^{2}} \\
& \oint \mathbf{B} \bullet d \ell=\mu_{o}\left(I+I_{d}\right) \\
& I_{d}=\varepsilon_{o} \frac{d \Phi_{E}}{d t} \\
& B=\mu_{o} n I \\
& \Phi_{B}=\int \mathbf{B} \bullet d \mathbf{A} \\
& \varepsilon=-\frac{d \Phi_{B}}{d t} \\
& \oint \mathbf{E} \bullet d \mathbf{s}=-\frac{d \Phi_{B}}{d t} \\
& \varepsilon_{L}=-N \frac{d \Phi_{B}}{d t}-L \frac{d I}{d t} \\
& L=\frac{N \Phi_{B}}{I} \\
& I=\frac{V}{R}\left(1-e^{-\frac{t}{\tau}}\right) \\
& \tau=\frac{L}{R} \\
& U=\frac{1}{2} L I^{2}
\end{aligned}
$$

