DO NOT TURN THIS PAGE!!!

NAME: _____

PHYSICS 4D SPRING 2009 EXAM 3

MAKE SURE TO SHOW ALL WORK IN COMPLETE DETAIL. NO CREDIT WILL BE GIVEN IF NO WORK IS SHOWN. THE POINT VALUE OF EACH PROBLEM IS AN INDICATED.

- 1. A particle of mass *m* is confined to move in a 1-dimensional box of length *L* where U(x) = 0 for 0<x<L and $U(x) = \infty$ for x<0 and x>L. (20 pts)
 - a) Starting with the Time-Independent Schrodinger Equation derive the wavefunction $\psi(x)$.
 - b) Normalize $\psi(x)$.
 - c) Determine the momentum of the particle.
 - d) Determine the energy of the particle.
 - e) Find the energy of the ground state and the first excited state.
 - f) Write down the complete wavefunction(s) $\Psi(x,t)$ for the first excited state.

2. Energy principles for the quantum oscillator can be used to relate $\langle p_x^2 \rangle$ to $\langle x^2 \rangle$. Obtain an expression for the uncertainty in momentum Δp_x for the quantum oscillator in the

ground state. (10 pts) Hint: $\langle x^2 \rangle = \frac{\hbar}{2m\omega}$

3. Consider a particle of energy E incident from the left on the infinite step potential shown below where $E < U_0$. (20 pts)

- a) Starting with the Time-Independent Schrodinger Equation derive the wavefunction $\psi(x)$ to the left and right of the step potential.
- b) Write down the complete wavefunction $\Psi(x,t)$ to the left and right of the step potential.
- c) Derive and expression for the Transmission and Reflection coefficient.
- d) If a current of 1A is incident on the step potential calculate how much current is transmitted and reflected.
- e) Find the probability density to the right of the step potential and explain its physical significance.