RESISTANCE AND OHM'S LAW

DEF: The current density *J* in a conductor is defined as the current per unit area.

$$J \equiv \frac{I}{A} = \frac{nqAv_d}{A} = nqv_d$$

Since v_d is a vector, we can define J to also be a vector J.

$$\mathbf{J} = nq\mathbf{v}_{\mathbf{d}}$$
 Current Density

Consider a uniform conductor of length L and cross-sectional area A.

$$V = V_a - V_b$$
 Potential Difference Across the Conductor

A current density **J** and Electric-Field **E** are established in a conductor whenever a potential difference is maintained across the conductor.

What happens to the magnitude of **E** and **J** if we increase V? They both increase! Explain!

Thus, if E increases then J increases and if E decreases then H decreases. Therefore, J is proportional to E!

$${f J}=\sigma E$$
 Ohm's Law

Material that obey Ohm's Law are said to be ohmic. (is independent of E)

Referring to the uniform conductor above:

$$V = E\ell$$
$$V = \frac{J}{\sigma}\ell = I\left(\frac{\ell}{\sigma A}\right)$$
$$R = \frac{\ell}{\sigma A}$$
Resistance of a Conductor

V = IR "Ohm's Law"

This is equation if often referred to Ohm's Law, but keep in mind that Ohm's Law is $J = \sigma E$.

Material that obey Ohm's Law are called ohmic.

The inverse of the conductivity σ is the resistivity ρ :

$$\rho = \frac{1}{\sigma}$$

$$R = \frac{\rho \ell}{A}$$
Resistance

- a) Resistance is a measure of the opposition that a material (resistor) presents to the flow of charge.
- b) Materials with large values of R are called resistors.
- 1. For a given p and A, the larger , the larger R and the smaller , the smaller R.
- 2. For a given p and , the larger A, the smaller R, and the smaller A, the larger R.
- 3. For a given A and , the larger ρ , the larger R, and the smaller ρ the smaller R.

*p depends on properties of material

- Materials with large ρ (small σ) are poor conductor but good insulators.
- Materials with small ρ (large σ) are good conductors but poor insulators.

Perfect insulator $\begin{cases} \rho = \infty \\ \sigma = 0 \end{cases}$ Perfect conductor $\begin{cases} \rho = 0 \\ \sigma = \infty \end{cases}$

Material	<u>ρ (Ω.m)</u>
Ag	1.59 x 10⁻ ⁸
Cu	1.7 x 10 ⁻⁸
Gold	2.44 x 10 ⁻⁸
Glass	10 ¹⁰ - 10 ¹⁴
Rubber	10 ¹³
Si	640

The SI unit of Resistance is the Ohm (Ω) .

1 Ω=1 V/A

(If the potential difference between across a conductor is 1V and the current flowing is 1A, then the resistance of the conductor is 1 Ω .

 $[\rho]=\Omega.m, \ [\sigma]=1/\Omega.m$