RL Circuits

Consider the RL-Circuit shown below with the switch S initially open.

Switch in Position 'a'

$$
\begin{aligned}
& \sum V_{\text {loop }}=0 \\
& V-I R-L \frac{d I}{d t}=0 \\
& \frac{d I}{d t}=\frac{V}{L}-\frac{I R}{L}
\end{aligned}
$$

At $\mathrm{t}=0$ when S is closed $I=0$:

$$
\frac{d I}{d t}=\frac{V}{L} \text { At } \mathrm{t}=0
$$

The larger the inductance L, the smaller dl/dt and the larger the opposition to the increase in current and thus the more slowly the current increases.

As I increase $\mathrm{dl} / \mathrm{dt} \rightarrow 0$ and the current reaches its steady state value:

$$
\begin{aligned}
& 0=\frac{V}{L}-\frac{I R}{L} \\
& I=\frac{V}{R} \text { Steady-state current }
\end{aligned}
$$

$\frac{d I}{d t}=\frac{V R}{L R}-\frac{I R}{L}=-\frac{R}{L}\left(I-\frac{V}{R}\right)$
$\int_{0}^{I} \frac{d I}{I-\frac{V}{R}}=-\frac{R}{L} \int_{0}^{t} d t$
$\ln \left(I-\frac{V}{R}\right)_{0}^{I}=-\frac{R}{L} t$
$\ln \left(I-\frac{V}{R}\right)-\ln \left(-\frac{V}{R}\right)=-\frac{t}{\tau}$
where $\tau=\frac{L}{R}$ (time constant)
$I(t)=\frac{V}{R}\left(1-e^{-\frac{t}{\tau}}\right)$

$\frac{d I}{d t}=-\frac{V}{R}\left(-\frac{1}{\tau}\right) e^{-\frac{t}{\tau}}$

$\varepsilon_{L}=-L \frac{d I}{d t}$
$\varepsilon_{L}=-L\left(\frac{V}{L}\right) e^{-\frac{t}{\tau}}$
$\varepsilon_{L}=-V e^{-\frac{t}{\tau}}$
$\varepsilon_{L}(0)=-V$

Switch in Position 'b'

$$
\begin{aligned}
& \sum V_{\text {loop }}=0 \\
& -I R-L \frac{d I}{d t}=0 \\
& \frac{d I}{I}=-\frac{R}{L} d t \\
& \int_{V / R}^{I} \frac{d I}{I}=-\frac{R}{L} \int_{0}^{t} d t \\
& I(t)=\frac{V}{R} e^{-\frac{t}{\tau}}
\end{aligned}
$$

